Publications

If you are unable to access an article, please reach out to b2laboratory@umich.edu.


2025


Syrydiuk R.A., Boltz A.J., Lempke L.B., van Pelt K., Balendran V., Scott K.L., Vesia M., Giordani B., McCrea M.A., McAllister T.W., Broglio S.P., CARE Consortium Investigators. Association Between Magnetic Resonance Imaging Use and Recovery Time Following Concussion: A CARE Consortium Study. Research In Sports Medicine.

2024


Simmonite M, Khammash D, Michon KJ, Hamlin A, Taylor SF, Vesia M, Polk TA. Age and visual cortex inhibition: a TMS-MRS study. Cereb Cortex. 2024 Sep 3;34(9):bhae352. doi: 10.1093/cercor/bhae352. PMID: 39227309. [PubMed] [Google Scholar]


Panda, R., Deluisi, J. A., Lee, T. G., Davis, S., Muñoz-Orozco, I., Albin, R. L., & Vesia, M. (2024). Improving efficacy of repetitive transcranial magnetic stimulation for treatment of Parkinson disease gait disorders. Frontiers in human neuroscience, 18, 1445595. doi: 10.3389/fnhum.2024.1445595. PMID: 39253068. [PubMed] [Google Scholar


Goldenkoff ER, Deluisi JA, Lee TG, Hampstead BM, Taylor SF, Polk TA, Vesia M. Repeated spaced cortical paired associative stimulation promotes additive plasticity in the human parietal-motor circuit. Clin Neurophysiol. 2024 Aug 14;166:202-210. doi: 10.1016/j.clinph.2024.08.005. Epub ahead of print. PMID: 39182339. [PubMed] [Google Scholar]

2023


Goldenkoff ER, Deluisi JA, Destiny DP, Lee TG, Michon KJ, Brissenden JA, Taylor SF, Polk TA, Vesia M. The behavioral and neural effects of parietal theta burst stimulation on the grasp network are stronger during a grasping task than at rest. Front Neurosci. 2023 Oct 26;17:1198222. doi: 10.3389/fnins.2023.1198222. PMID: 37954875; PMCID: PMC10637360. [PubMed] [Google Scholar]


Taylor S, Gu P, Simmonite M, Lasagna C, Tso I, Lee T, Vesia M, Hernandez-Garcia L.

Lateral prefrontal stimulation of active cortex with theta burst transcranial magnetic stimulation affects subsequent engagement of the frontoparietal network. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Oct 31:S2451-9022(23)00284-7. doi: 10.1016/j.bpsc.2023.10.005. Online ahead of print. PMID: 37918508 [PubMed] [Google Scholar]


El Jamal C, Harrie A, Rahman-Filipiak A, Iordan AD, DaSilva AF, Ploutz-Snyder R, Khadr L, Vesia M, Bikson M, Hampstead BM. Tolerability and blinding of high-definition transcranial direct current stimulation among older adults at intensities of up to 4 mA per electrode. Brain Stimul. 2023 Sep 1;16(5):1328-1335. doi: 10.1016/j.brs.2023.08.025. Epub ahead of print. PMID: 37660936. [PubMed] [Google Scholar]

2022


Gross, M. Melissa, Marquardt, Kairos, Hasson, Rebecca E., Vesia, Michael, King, Anthony R., & Bodary. Peter F.. (2022). Designing for Cross-Cutting Skill Development and Diversity, Equity, and Inclusion in a Foundational Kinesiology Course. Kinesiology Review. [Advance online publication]



Logue, RN, Goldenkoff, ER, Vesia, M, & Brown, SC (2022) Measuring hand sensory function and force control in older adults: Are current hand assessment tools enough? The Journals of Gerontology, Series A, glab368 [PubMed] [Google Scholar]


2021


Baarbé, J, Vesia, M, Gunraj, C, Jegatheeswaran, G, Brown, MJN, Lizarraga, K, Weissbach, A, Drummond, N, Saravanamuttu, J, Rinchon, C, Kunaratnam, N, Chen, R (2021) Interhemispheric interactions between the right angular gyrus and the left motor cortex: a transcranial magnetic stimulation study. Journal of Neurophysiology, 125 (4), 1236-1250 [PubMed] [Google Scholar]


 

Goldenkoff, ER, Logue, RN, Brown, SC, & Vesia, M (2021) Reduced facilitation of parietal-motor functional connections in older adults. Frontiers in Aging Neuroscience, 13, e595288 [PubMed] [Google Scholar]


 

Goldenkoff, ER, McGregor, HR, Mergos, J, Gholizadeh, P, Bridenstine, J, Brown, MJN, & Vesia, M (2021) Reversal of visual feedback modulates somatosensory plasticity. Neuroscience, 452, 335-344 [PubMed] [Google Scholar]


 

Callahan, CE, Davis Moore, R, Kay, JM, Colwell, A, Register-Mihalik, JK, Vesia, M, Broglio, SP (2021) Post-concussion depressive symptoms and clinical assessment associations in adolescents. Translational Journal of the American College of Sports Medicine (TJACSM), 6 (2), e000159 [Google Scholar]

2020


Ni, Z, McCabe, S, Novak, C, Baltzer, H, Jegatheeswaran, G, Isayama, R, Vesia, M, Gunraj, C, Saha, U, Hallett, M, & Chen, R (2020) Plastic changes in the brain after human hand allotransplantation. Neurology, 95 (12), 547-550 [PubMed] [Google Scholar]


 

Goldenkoff, ER, Mashni, A, Michon, KJ, Lavis, H, & Vesia, M (2020) Measuring and manipulating functionally specific neural pathways in the human motor system with transcranial magnetic stimulation. Journal of Visualized Experiments, (156), e60706 [PubMed] [Google Scholar]

2019


Brown, MJN, Goldenkoff, ER, Chen, R, Gunraj, C, & Vesia, M (2019) Using dual-site transcranial magnetic stimulation to probe connectivity between the dorsolateral prefrontal cortex and ipsilateral primary motor cortex in humans. Brain Sciences, 9 (8), 177 [PubMed] [Google Scholar]


 

Brown, MJN, Weissbach, A, Martje, Pauly, MG, Vesia, M, Gunraj, C, Baarbé, J, Münchau, A, Bäumer, T, & Chen, R (2019) Somatosensory-motor cortex interactions measured using dual-site transcranial magnetic stimulation. Brain Stimulation, 12(5), 1229-1243 [PubMed] [Google Scholar]


 

Vesia, M, Pellicciari, R, Cash, RHF, Isayama, R, Kunaratnam, N, & Chen, R (2019) Learning from goal and action-based observation differentially modulates functional motor cortical plasticity. Neuroscience, 404, 387-395 [PubMed] [Google Scholar]


 

Isayama, R, Vesia, M, Jegatheeswaran, G, Elahi, B, Gunraj, C, Cardinali, L, Farnè, A, & Chen, R (2019) Rubber hand illusion modulates the influences of somatosensory and parietal inputs to the motor cortex. Journal of Neurophysiology, 121(2), 563-573 [PubMed] [Google Scholar]

2018


Vesia, M, Culham, JC, Jegatheeswaran, G, Isayama, R, Le, A, Davare, M, & Chen, R (2018) Functional interaction between human dorsal premotor cortex and ipsilateral primary motor cortex for grasp plans: a dual-site TMS study. Neuroreport 29(16), 1355-1359 [PubMed] [Google Scholar]


 

Jegatheeswaran, G, Vesia, M, Isayama, R, & Chen, R (2018) Increases in motor cortical excitability during mirror visual feedback of a precision grasp is influenced by vision and movement of the opposite limb. Neuroscience Letters 681, 31-36 [PubMed] [Google Scholar]


 

McGregor, HR, Vesia, M, Rinchon, VC, Chen, R, & Gribble, PL (2018) Changes in corticospinal excitability associated with motor learning by observing. [PubMed] [Google Scholar]

2017


Rostogi, A, Cash, RHF, Dunlop, K, Vesia, M, Kucyi, A, Ghahremani, A, Downar, J, Chen, J, & Chen, R (2017) Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. NeuroImage 158, 48-57 [PubMed] [Google Scholar]


 

Vesia, M, Barnett-Cowan, M, Elahi, B, Jegatheeswaran, G, Isayama, R, Neva, JL, Davare, M, Staines, WR, Culham, JC, & Chen, R (2017) Human dorso-medial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex 92, 175-186 [PubMed] [Google Scholar]


 

Le, A, Vesia, M, Yan, XG, Crawford, JD, Niemeier, M (2017) Parietal area BA7 integrates motor programs for reaching, grasping, and bimanual coordination. Journal of Neurophysiology 117, 624-636 [PubMed] [Google Scholar]

2016


Schintu, S, Martín-Arévalo, E, Vesia, M, Rossetti, Y, Salemme, R, Pisella, L, Farnè, A, & Reilly, KT (2016) Paired-pulse parietal-motor stimulation differentially modulates corticospinal excitability across hemispheres when combined with prism adaptation. Journal of Neural Plasticity, Article ID 5716179, 9 pages [PubMed] [Google Scholar]

2015


Vesia, M, Niemeier, M, Black, SE, & Staines, WR (2015) The time course for visual extinction after a 'virtual' lesion of right posterior parietal cortex. Brain and Cognition, 98, 27-34 [PubMed] [Google Scholar]


 

Neva, JL, Vesia, M, Singh, AM, & Staines, WR (2015) Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training. Brain Research, 1618, 61-74 [PubMed] [Google Scholar]

2014


Vesia, M & Chen, R (2014) Focal hand dystonia: using brain stimulation to probe network interactions and guide brain plasticity. Movement Disorders, 29(10), 1227-1229 [PubMed] [Google Scholar]


 

Bolton, DA, Vesia, M, Lakhani, B, Staines, WR, McIlroy, WE (2014). Timing of response differentiation in human motor cortex during a speeded Go/No-Go task. Neuroscience Research, 85, 65-68 [PubMed] [Google Scholar]



Neva, JL, Singh, AM, Vesia, M, & Staines, WR (2014) Selective modulation of left primary motor cortex excitability after continuous theta burst stimulation to right primary motor cortex and bimanual training. Behavioral Brain Research, 269, 138-146 [PubMed] [Google Scholar]


 

Neva, JL, Vesia, M, Singh, AM, & Staines, WR (2014) Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex. Behavioral Brain Research, 261, 289-296. [PubMed] [Google Scholar]


 

Le, A, Vesia, M, Yan, XG, Niemeier, M, & Crawford, JD (2014) The right anterior parietal sulcus is critical for bimanual grasping: a TMS study. Cerebral Cortex, 24(10), 2591-2603 [PubMed] [Google Scholar]

2013


Vesia, M, Bolton, DA, Mochizuki, G, & Staines, WR (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia, 51(3), 410-417 [PubMed] [Google Scholar]


 

Dessing, JC, Vesia, M, & Crawford, JD (2013) The role of areas MT+/V5 and SPOC in the spatial and temporal control of manual interception: an rTMS study. Frontiers in Behavioral Neuroscience, 7(15), 1-13 [PubMed] [Google Scholar]

2012


Vesia, M & Crawford, JD (2012). Specialization of reach function in human posterior parietal cortex. Experimental Brain Research, 221(1), 1-18 [PubMed] [Google Scholar]

2011


Vesia, M & Davare, M (2011) Decoding action intentions in parietofrontal circuits. Journal of Neuroscience, 31(46), 16491-16493. [PubMed] [Google Scholar]


 

Prime, SL, Vesia, M, & Crawford, JD (2011) Cortical mechanisms for trans-saccadic memory and integration of multiple object features. Philosophical Transactions of the Royal Society B : Biological Sciences, 366 (1564), 540-553 [PubMed] [Google Scholar]

2010


Vesia, M, Prime, SL, Yan, XG, Sergio, LE, & Crawford, JD (2010) Specificity of human parietal saccade and reach regions during transcranial magnetic stimulation.  Journal of Neuroscience, 30(39), 13053-13065 (Featured on Discovery Channel’s Daily Planet Program; Recommended by Faculty 1000-member: M. Corbetta) [PubMed] [Google Scholar]


 

Prime, SL, Vesia, M, & Crawford, JD (2010) TMS over human frontal eye fields disrupts trans-saccadic memory of multiple objects. Cerebral Cortex, 20(4), 759-772 [PubMed] [Google Scholar]

2008

 

Vesia, M, Yan, XG., Henriques, DY, Sergio, LE, & Crawford, JD (2008) Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan. Journal of Neurophysiology, 100(4), 2005-2014 [PubMed] [Google Scholar]


                      

Vesia, M, Esposito, JG, Prime, SL, & Klavora, P (2008) Correlations of selected psychomotor abilities and visuomotor tests with initial Dynavision performance.  Perceptual and Motor Skills, 107, 14-20 [PubMed] [Google Scholar]



Prime, SL, Vesia, M, & Crawford, JD (2008) Transcranial magnetic stimulation over posterior parietal cortex disrupts trans-saccadic memory of multiple objects. Journal of Neuroscience, 28(27), 6938-6949 [PubMed] [Google Scholar]

2006

 

Vesia, M, Monteon, JA, Sergio, LE, & Crawford, JD (2006) Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex.  Journal of Neurophysiology, 96(6), 3016-3027 [PubMed] [Google Scholar]

2005

 

Vesia, M, Vander, H, Yan, XG, & Sergio, LE (2005) The time course for kinetic versus kinematic planning of goal-directed human motor behavior.  Experimental Brain Research, 160(3), 290-301 [PubMed] [Google Scholar]